MEMORY Mobile FCRAM[™] смоз 32M Bit (2 M word x 16 bit)

Mobile Phone Application Specific Memory

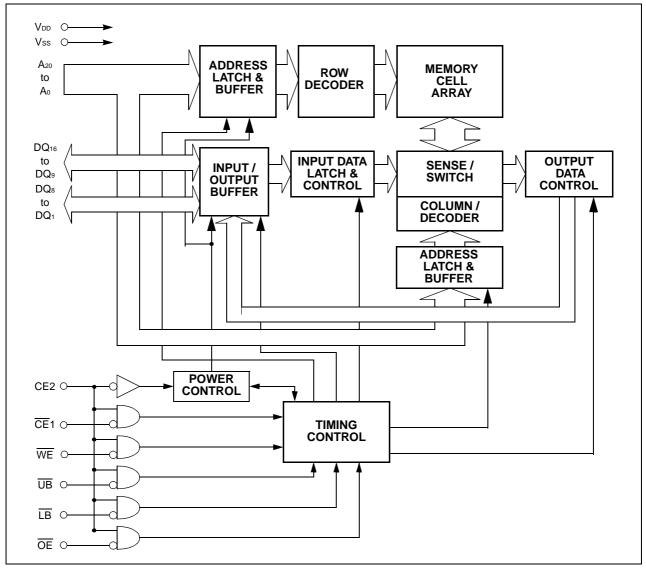
MB82DP02183C-65L

CMOS 2,097,152-WORD x 16 BIT Fast Cycle Random Access Memory with Low Power SRAM Interface

DESCRIPTION

The Fujitsu MB82DP02183C is a CMOS Fast Cycle Random Access Memory (FCRAM) with asynchronous Static Random Access Memory (SRAM) interface containing 33,554,432 storages accessible in a 16-bit format. This MB82DP02183C is suited for mobile applications such as Cellular Handset and PDA.

■ FEATURES


- Asynchronous SRAM Interface
- Fast Access Time tce = tAA = 65ns max
- 8 words Page Access Capability tPAA = 20ns max
- Low Voltage Operating Condition VDD = +2.6V to +3.1V or
 - +3.1V to +3.5V
- Wide Operating Temperature $T_A = -30^{\circ}C \text{ to } +85^{\circ}C$

- Byte Control by LB and UB
- Low Power Consumption
 IDDA1 = 30mA max
 IDDS1 = 80µA max
- Various Power Down mode Sleep 4M-bit Partial 8M-bit Partial

■ PIN DESCRIPTION

Pin Name	Description
A ₂₀ to A ₀	Address Input
CE1	Chip Enable (Low Active)
CE2	Chip Enable (High Active)
WE	Write Enable (Low Active)
OE	Output Enable (Low Active)
UB	Upper Byte Control (Low Active)
LB	Lower Byte Control (Low Active)
DQ16-9	Upper Byte Data Input/Output
DQ8-1	Lower Byte Data Input/Output
Vdd	Power Supply
Vss	Ground

BLOCK DIAGRAM

■ FUNCTION TRUTH TABLE

Mode	Note	CE2	CE1	WE	OE	LB	UB	A20-0	DQ8-1	DQ16-9							
Standby (Deselect)		Н	н	х	х	х	х	х	High-Z	High-Z							
Output Disable	*1			Н	Н	Х	х	*3	High-Z	High-Z							
Output Disable (No Read)			н			Н	н	Valid	High-Z	High-Z							
Read (Upper Byte)										L	Ц	L	Н	L	Valid	High-Z	Output Valid
Read (Lower Byte)										L	н	Valid	Output Valid	High-Z			
Read (Word)		н	L							L	L	Valid	Output Valid	Output Valid			
No Write						Н	Н	Valid	Invalid	Invalid							
Write (Upper Byte)					*4 H	Н	L	Valid	Invalid	Input Valid							
Write (Lower Byte)					L						L	Н	Valid	Input Valid	Invalid		
Write (Word)						L	L	Valid	Input Valid	Input Valid							
Power Down	*2	L	х	х	х	Х	х	Х	High-Z	High-Z							

Notes $L = V_{IL}$, $H = V_{IH}$, X can be either V_{IL} or V_{IH} , High-Z = High Impedance

- *1: Should not be kept this logic condition longer than 1μs. Please contact local FUJITSU representative for the relaxation of 1μs limitation.
 *2
- *2: Power Down mode can be entered from Standby state and all DQ pins are in High-Z state. Data retention depends on the selection of Power Down Program. Refer to POWER DOWN for the detail.
- *3: Can be either V_{IL} or V_{IH} but must be valid before Read or Write.
- *4: OE can be V_{IL} during Write operation if the <u>following</u> conditions are satisfied;
 (1) Write pulse is initiated by CE1 (refer to CE1 Controlled Write timing), or <u>cycl</u>e time of the previous operation cycle is satisfied.
 - (2) OE stays V_{IL} during Write cycle.

POWER DOWN

Power Down

The Power Down is low power idle state controlled by CE2. CE2 Low drives the device in power down mode and maintains low power idle state as long as CE2 is kept Low. CE2 High resumes the device from power down mode.

This device has three power down mode, Sleep, 4M Partial and 8M Partial.

These can be programmed by series of read/write operation. Each mode has follwoing features.

Mode	Data Retention	Retention Address
Sleep (default)	No	N/A
4M Partial	4M bit	00000h to 3FFFFh
8M Partial	8M bit	00000h to 7FFFFh

The default state is Sleep and it is the lowest power consumption but all data will be lost once CE2 is brought to Low for Power Down. It is not required to program to Sleep mode after power-up.

Power Down Program Sequence

The program requires total 6 read/write operation with unique address. Between each read/write operation requires that device be in standby mode. Following table shows the detail sequence.

Cycle #	Operation	Address	Data
1st	Read	1FFFFh (MSB)	Read Data (RDa)
2nd	Write	1FFFFh	RDa
3rd	Write	1FFFFh	RDa
4th	Write	1FFFFh	Don't Care (X)
5th	Write	1FFFFh	Х
6th	Read	Address Key	Read Data (RDb)

The first cycle is to read from most significient address (MSB).

The second and third cycle are to write back the data (RDa) read by first cycle. If the second or third cycle is written into the different address, the program is cancelled and the data written by the second or third cycle is valid as a normal write operation.

The forth and fifth cycle is to write to MSB. The data of forth and fifth cycle is don't-care. If the forth or fifth cycle is written into different address, the program is also cancelled but write data may not be wrote as normal write operation.

The last cycle is to read from specific address key for mode selection.

Once this program sequence is performed from a Partial mode to the other Partial mode, the written data stored in memory cell array may be lost. So, it should perform this program prior to regular read/write operation if Partial mode is used.

Address Key

The address key has following format.

Mode		Address					
Mode	A20	A19	A18 - A0	Binary			
Sleep (default)	1	1	1	1FFFFFh			
4M Partial	1	0	1	17FFFFh			
8M Partial	0	1	1	0FFFFFh			

■ ABSOLUTE MAXIMUM RATINGS (See WARNING below.)

Parameter	Symbol	Value	Unit
Voltage of VDD Supply Relative to Vss	Vdd	-0.5 to +3.6	V
Voltage at Any Pin Relative to Vss	Vin, Vout	-0.5 to +3.6	V
Short Circuit Output Current	Іоит	<u>+</u> 50	mA
Storage Temperature	Тѕтс	-55 to +125	٥C

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS (See WARNING below.)

(Referenced to Vss)

Parameter	Notes	Symbol	Min.	Max.	Unit
		VDD(31)	3.1	3.5	V
Supply Voltage		VDD(26)	2.6	3.1	
		Vss	0	0	V
High Level Input Voltage	*1	VIH(31)	Vdd*0.8	V _{DD} +0.2 and ≤+3.6	V
		VIH(26)	VDD*0.8	Vdd+0.2	
Low Level Input Voltage	*2	VIL	-0.3	Vdd*0.2	V
Ambient Temperature		TA	-30	85	°C

Notes *1: Maximum DC voltage on input and I/O pins are V_{DD}+0.2V. During voltage transitions, inputs may positive overshoot to V_{DD}+1.0V for periods of up to 5 ns.

*2: Minimum DC voltage on input or I/O pins are -0.3V. During voltage transitions, inputs may negative overshoot Vss to -1.0V for periods of up to 5ns.

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

■ PACKAGE PIN CAPACITANCE

Test conditions:	T 25°C	f = 1.01	
Test conditions:	$IA = 25^{\circ}$, I = 1.0 I	VIHZ

Symbol	Description	Test Setup	Тур.	Max.	Unit
CIN1	Address Input Capacitance	$V_{IN} = 0V$	—	5	pF
CIN2	Control Input Capacitance	VIN = 0V	—	5	pF
Сю	Data Input/Output Capacitance	Vio = 0V	_	8	pF

DC CHARACTERISTICS (Under Recommended Operating Conditions unless otherwise noted)Note *1,*2,*3

Parameter	Symbol	Test Condition	ons	Min.	Max.	Unit
Input Leakage Current	Iц	VIN = Vss to VDD		-1.0	+1.0	μA
Output Leakage Current	Ilo	Vout = Vss to VDD, Outpu	ut Disable	-1.0	+1.0	μA
Output High Voltage Level	Vон	$V_{DD} = V_{DD}(min), I_{OH} = -0$).5mA	2.4	_	V
Output Low Voltage Level	Vol	lo∟ = 1mA		_	0.4	V
	IDDPS	$V_{DD} = V_{DD(26)} \max.,$	SLEEP	_	10	μA
VDD Power Down Current	DDP4	VIN = VIH OR VIL,	4M Partial	_	40	μA
IDDP8 CE2 ≤		CE2 ≤ 0.2V	8M Partial	_	50	μA
	Idds	$V_{DD} = V_{DD(26)} \text{ max.},$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $\overline{CE1} = CE2 = V_{IH}$		_	1.5	mA
V _{DD} Standby Current	IDDS1	$ \begin{split} & V_{\text{DD}} = V_{\text{DD}(26)} \text{ max.}, \\ & \underline{V}_{\text{IN}} \leq 0.2 \text{V or } V_{\text{IN}} \geq V_{\text{DD}} - 0.2 \text{V}, \\ & \overline{\text{CE1}} = \text{CE2} \geq V_{\text{DD}} - 0.2 \text{V} \end{split} $		_	80	μΑ
Vpp Active Current	IDDA1	$V_{DD} = V_{DD(26)} \text{ max.},$ $V_{IN} = V_{IH} \text{ or } V_{IL},$	t _{RC} / t _{WC} = minimum	_	30	mA
Vbb Active Current	IDDA2	CE1 = VIL and CE2= trc / twc = VIH, IOUT=0mA 1µs			3	mA
V _{DD} Page Read Current	Idda3	$\label{eq:VDD} \begin{split} \frac{V_{DD} = V_{DD(26)} \mbox{ max., } V_{IN} = V_{IH} \mbox{ or } V_{IL}, \\ \hline CE1 = V_{IL} \mbox{ and } CE2 = V_{IH}, \\ \hline I_{OUT} = 0 \mbox{ mA, } t_{PRC} = \mbox{ min.} \end{split}$		_	10	mA

Notes *1: All voltages are referenced to Vss.

*2: DC Characteristics are measured after following POWER-UP timing.

*3: IOUT depends on the output load conditions.

AC CHARACTERISTICS (Under Recommended Operating Conditions unless otherwise noted)

READ OPERATION

Bananatan	Ormatical	Va	lue	11	Notes	
Parameter	Symbol	Min.	Max.	Unit		
Read Cycle Time	trc	65	1000	ns	*1, *2	
CE1 Access Time	tce	—	65	ns	*3	
OE Access Time	toe	—	40	ns	*3	
Address Access Time	taa	—	65	ns	*3, *5	
LB / UB Access Time	tва	—	30	ns	*3	
Page Address Access Time	t paa	—	20	ns	*3, *6	
Page Read Cycle Time	t prc	20	1000	ns	*1, *6, *7	
Output Data Hold Time	tон	5	—	ns	*3	
CE1 Low to Output Low-Z	tcLz	5	—	ns	*4	
OE Low to Output Low-Z	tolz	0	—	ns	*4	
LB / UB Low to Output Low-Z	t _{BLZ}	0	—	ns	*4	
CE1 High to Output High-Z	tснz	—	20	ns	*3	
OE High to Output High-Z	tонz	—	15	ns	*3	
LB / UB High to Output High-Z	tвнz	—	20	ns	*3	
Address Setup Time to $\overline{CE}1$ Low	tasc	-5	—	ns		
Address Setup Time to OE Low	taso	10	—	ns		
Address Invalid Time	tax	—	10	ns	*5, *8	
Address Hold Time from CE1 High	tснан	-6	—	ns	*9	
Address Hold Time from OE High	tонан	-6	—	ns		
WE High to OE Low Time for Read	twhol	12	1000	ns	*10	
CE1 High Pulse Width	tcp	12	—	ns		

Notes *1: Maximum value is applicable if CE1 is kept at Low without change of address input of A3 to A20. If needed by system operation, please contact local FUJITSU representative for the relaxation of 1μs limitation.

- *2: Address should not be changed within minimum trc.
- *3: The output load 50pF.
- *4: The output load 5pF.
- *5: Applicable to A3 to A20 when $\overline{CE1}$ is kept at Low.
- *6: Applicable only to A0, A1 and A2 when CE1 is kept at Low for the page address access.
- *7: In case Page Read Cycle is continued with keeping CE1 stays Low, CE1 must be brought to High within 4μs. In other words, Page Read Cycle must be closed within 4μs.
- *8: Applicable when at least two of address inputs among applicable are switched from previous state.
- *9: trc(min) and tprc(min) must be satisfied.
- *10: If actual value of twhol is shorter than specified minimum values, the actual tak of following Read may become longer by the amount of subtracting actual value from specified minimum value.

■ AC CHARACTERISTICS (Continued)

WRITE OPERATION

Devemator	Cumb al	Va	lue	11	Nataa
Parameter	Symbol	Min.	Max.	Unit	Notes
Write Cycle Time	twc	65	1000	ns	*1, *2
Address Setup Time	tas	0	—	ns	*3
CE1 Write Pulse Width	tcw	40	—	ns	*3
WE Write Pulse Width	twp	40	—	ns	*3
LB / UB Write Pulse Width	tвw	40	—	ns	*3
LB / UB Byte Mask Setup Time	tвs	-5	—	ns	*4
LB / UB Byte Mask Hold Time	tвн	-5	—	ns	*5
Write Recovery Time	twr	0	—	ns	*6
CE1 High Pulse Width	t CP	12	—	ns	
WE High Pulse Width	t whp	12	1000	ns	
LB / UB High Pulse Width	tвнр	12	1000	ns	
Data Setup Time	tos	12	—	ns	
Data Hold Time	tон	0	—	ns	
\overline{OE} High to \overline{CE} 1 Low Setup Time for Write	t OHCL	-5	—	ns	*7
OE High to Address Setup Time for Write	toes	0	_	ns	*8
LB and UB Write Pulse Overlap	tвwo	30	—	ns	

- **Notes** *1: Maximum value is applicable if CE1 is kept at Low without any address change. If the relaxation is needed by system operation, please contact local FUJITSU representative for the relaxation of 1 μs limitation.
 - *2: Minimum value must be equal or greater than the sum of write pulse (tcw, twp or tbw) and write recovery time (twRc, twR or tbR).
 - *3: Write pulse is defined from High to Low transition of $\overline{CE1}$, \overline{WE} , or $\overline{LB} / \overline{UB}$, whichever occurs last.
 - *4: Ap<u>plic</u>able for byte mask only. Byte mask setup time is defined to the High to Low transition of $\overline{CE1}$ or WE whichever occurs last.
 - *5: <u>Applicable for byte mask only.</u> Byte mask hold time is defined from the Low to High transition of CE1 or WE whichever occurs first.
 - *6: Write recovery is defined from Low to High transition of $\overline{CE}1$, \overline{WE} , or $\overline{LB} / \overline{UB}$, whichever occurs first.
 - *7: If \overline{OE} is Low after minimum toHCL, read cycle is initiated. In other word, \overline{OE} must be brought to High within 5ns after CE1 is brought to Low. Once read cycle is initiated, new write pulse should be input after minimum tRC is met.
 - *8: If \overline{OE} is Low after new address input, read cycle is initiated. In other word, \overline{OE} must be brought to High at the same time or before new address valid. Once read cycle is initiated, new write pulse should be input after minimum t_{RC} is met and data bus is in High-Z.

■ AC CHARACTERISTICS (Continued)

POWER DOWN PARAMETERS

Parameter	Symbol	Value		Unit	Note
Falameter		Min.	Max.	Unit	Note
CE2 Low Setup Time for Power Down Entry	tcsp	10		ns	
CE2 Low Hold Time after Power Down Entry	tc2LP	65		ns	
CE1 High Hold Time following CE2 High after Power Down Exit [SLEEP mode only]	tснн	300	_	μs	*1
CE1 High Hold Time following CE2 High after Power Down Exit [not in SLEEP mode]	t сннр	1	_	μs	*2
CE1 High Setup Time following CE2 High after Power Down Exit	tснs	0	_	ns	*1

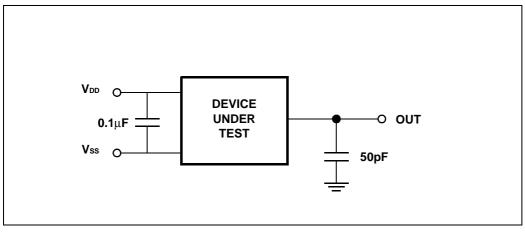
Notes *1: Applicable also to power-up.

*2: Applicable when 4M and 8M Partial mode is programmed.

OTHER TIMING PARAMETERS

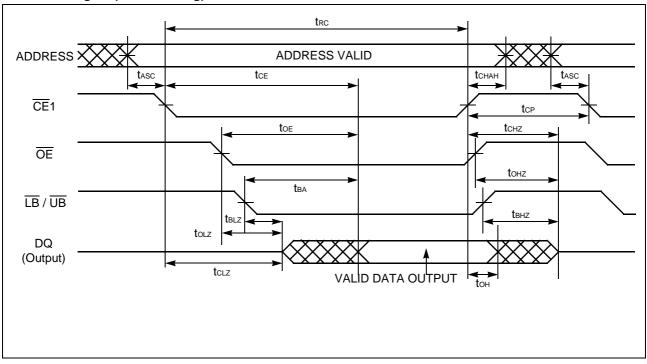
Parameter	Symbol	Value		Unit	Note
Parameter Symbol		Min.	Max.		
CE1 High to OE Invalid Time for Standby Entry	t снох	10	—	ns	
CE1 High to WE Invalid Time for Standby Entry	t CHWX	10	_	ns	*1
CE2 Low Hold Time after Power-up	tc2LH	50	_	μs	
CE1 High Hold Time following CE2 High after Power-up	tснн	300	_	μs	
Input Transition Time	t⊤	1	25	ns	*2

Notes *1: Some data might be written into any address location if tcHWX(min) is not satisfied.


*2: The Input Transition Time (t_T) at AC testing is 5ns as shown in below. If actual t_T is longer than 5ns, it may violate AC specification of some timing parameters.

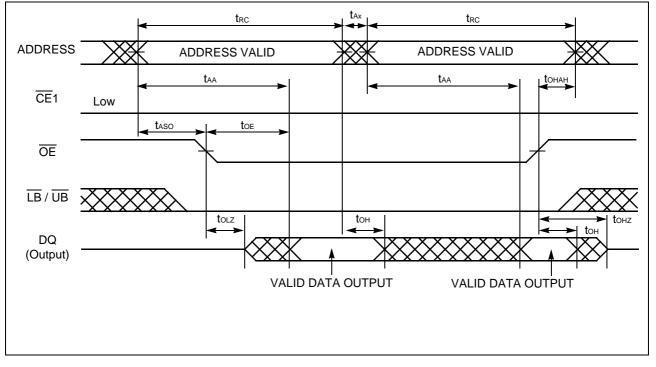
■ AC CHARACTERISTICS (Continued)

AC TEST CONDITIONS

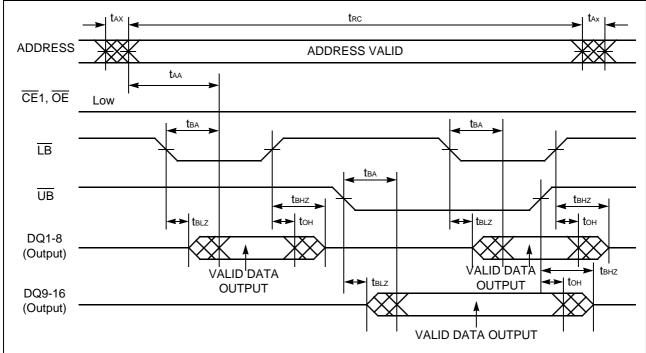

Symbol	Description	Test Setup	Value	Unit	Note
Vін	Input High Level		Vdd * 0.8	V	
Vı∟	Input Low Level		Vdd * 0.2	V	
Vref	Input Timing Measurement Level		Vdd * 0.5	V	
tτ	Input Transition Time	Between VIL and VIH	5	ns	

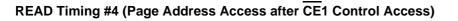
AC MEASUREMENT OUTPUT LOAD CIRCUIT

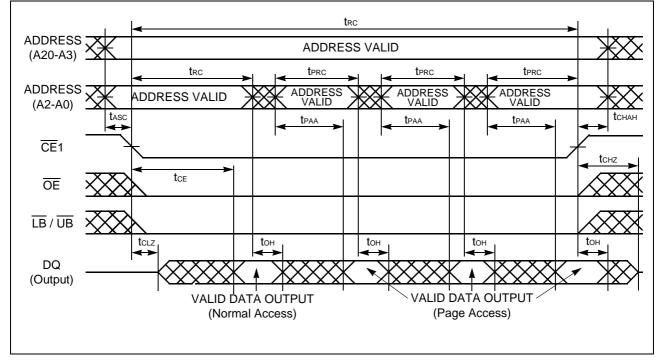
TIMING DIAGRAMS

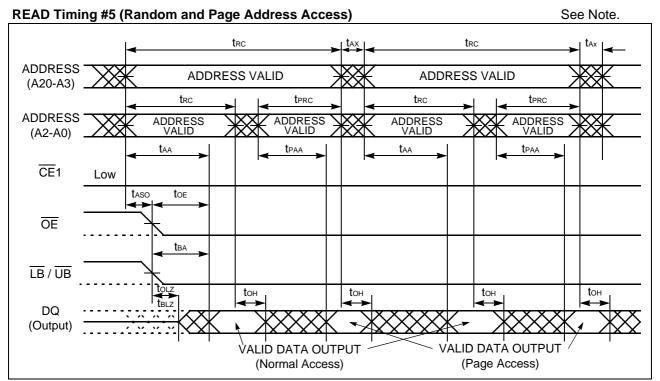


Note: This timing diagram assumes CE2=H and \overline{WE} =H.



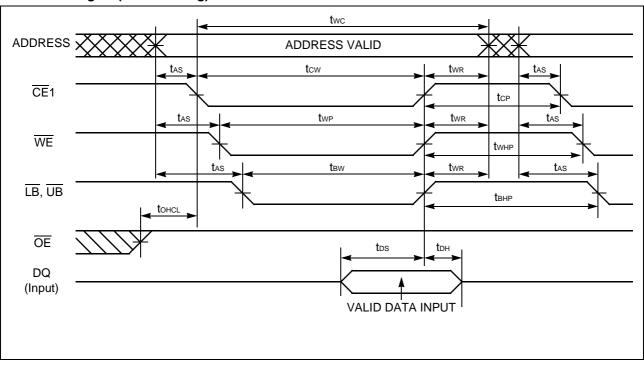

Notes:This timing diagram assumes CE2=H and \overline{WE} =H.


See Note.

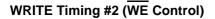

Note: This timing diagram assumes CE2=H and \overline{WE} =H.

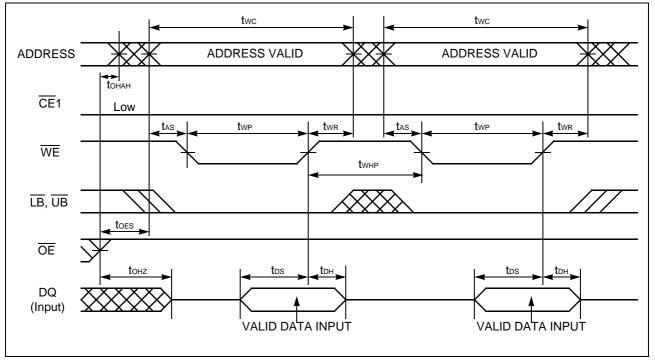
See Note.

Notes:This timing diagram assumes CE2=H and \overline{WE} =H.

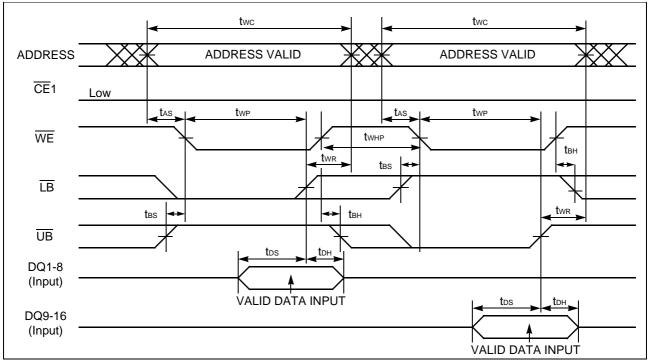

Notes *1: This timing diagram assumes CE2=H and WE=H.

*2: Either or both \overline{LB} and \overline{UB} must be Low when both $\overline{CE1}$ and \overline{OE} are Low.


See Note.

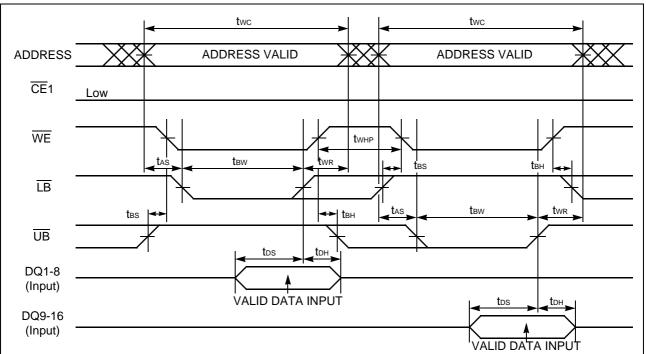

■ TIMING DIAGRAMS (Continued)

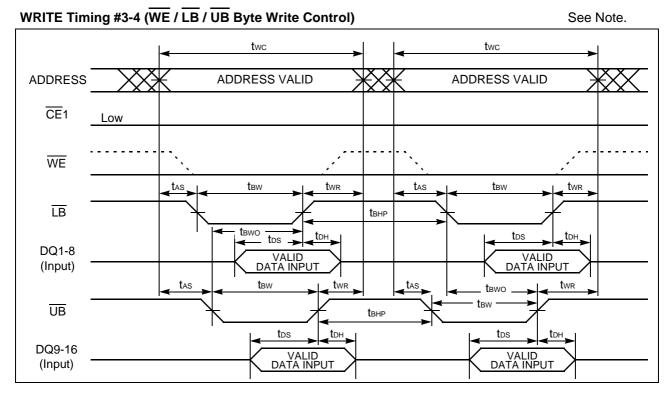
Notes: This timing diagram assumes CE2=H.



■ TIMING DIAGRAMS (Continued)

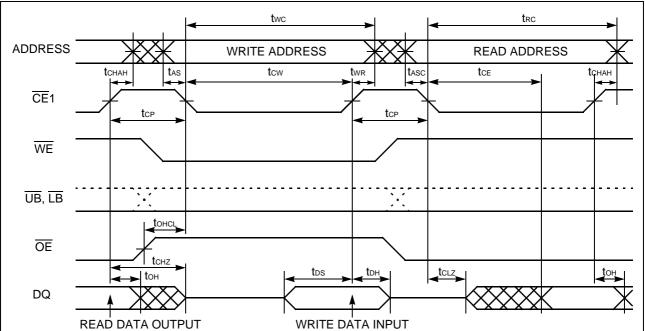
WRITE Timing #3-1 (WE / LB / UB Byte Write Control)


Note: This timing diagram assumes CE2=H and \overline{OE} =H.

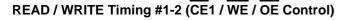

Note: This timing diagram assumes CE2=H and \overline{OE} =H.

TIMING DIAGRAMS (Continued)

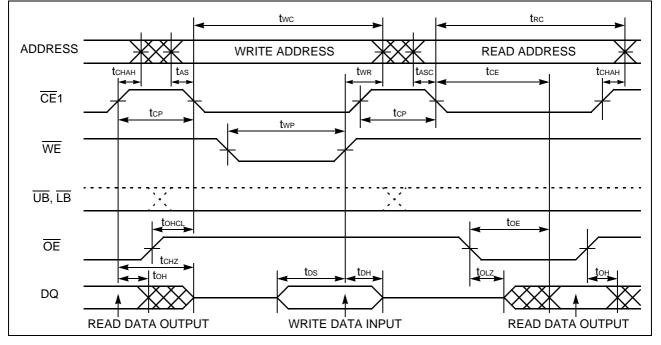
WRITE Timing #3-3 (WE / LB / UB Byte Write Control)



Note: This timing diagram assumes CE2=H and \overline{OE} =H.



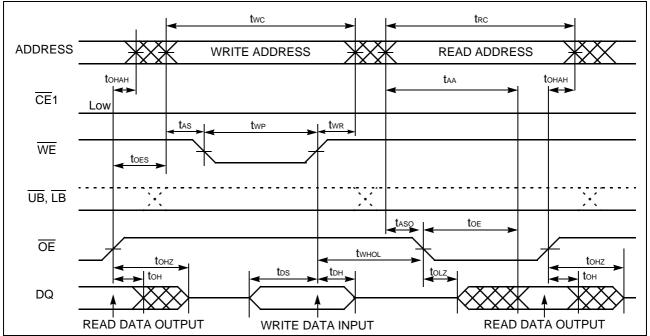
Note: This timing diagram assumes CE2=H and \overline{OE} =H.



Notes *1: This timing diagram assumes CE2=H. *2: Write address is valid from either CE1 or WE of last falling edge.

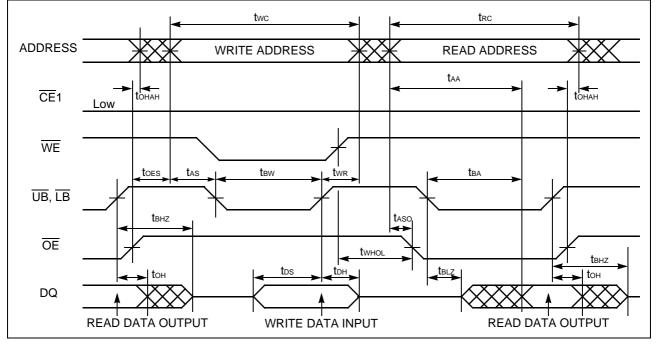
See Note.

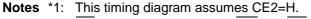
See Note.



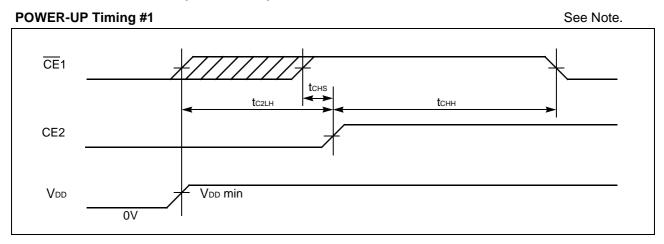
*2: OE can be fixed Low during write operation if it is CE1 controlled write at Read-Write-Read sequence.

READ / WRITE Timing #2 (OE, WE Control)

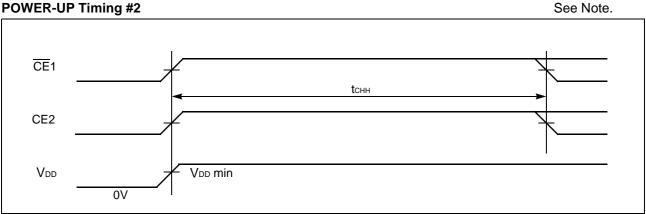




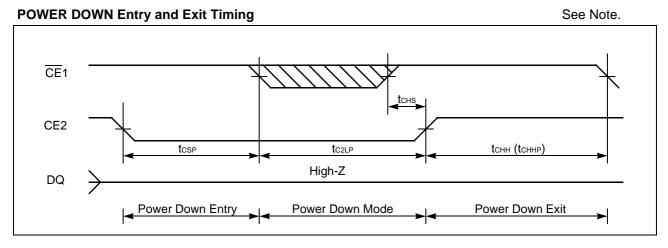
Notes *1: This timing diagram assumes CE2=H. *2: CE1 can be tied to Low for WE and OE controlled operation.



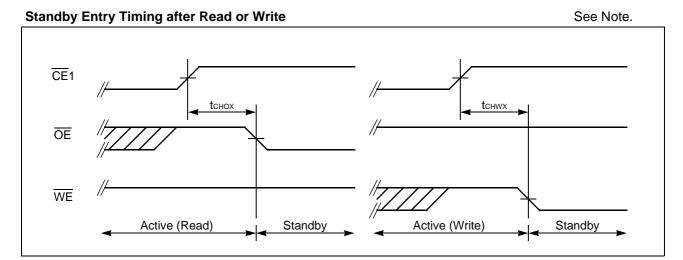
See Note.



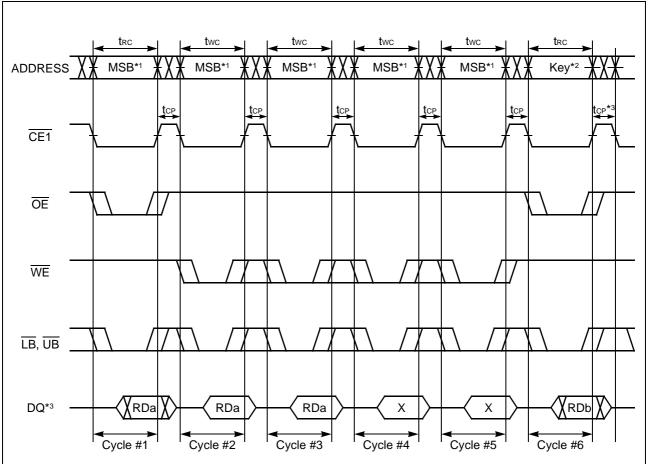
*2: $\overline{CE}1$ can be tied to Low for \overline{WE} and \overline{OE} controlled operation.



Note: The tc2LH specifies after VDD reaches specified minimum level.


POWER-UP Timing #2

Note: The tCHH specifies after VDD reaches specified minimum level and applicable to both $\overline{CE}1$ and CE2.


Note: This Power Down mode can be also used as a reset timing if POWER-UP timing above could not be satisfied and Power-Down program was not performed prior to this reset.

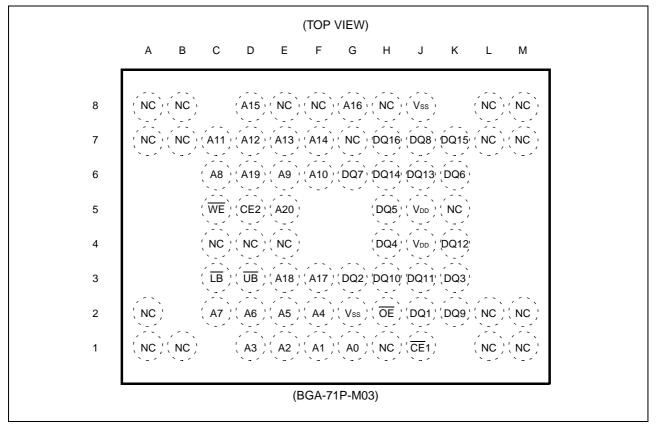
Note: Both tchox and tchwx define the earliest entry timing for Standby mode. If either of timing is not satisfied, it takes tRC (min) period for Standby mode from CE1 Low to High transition.

■ TIMING DIAGRAMS (Continued)

Notes *1: The all address inputs must be High from Cycle #1 to #5.

- *2: The address key must confirm the format specified in page 6. If not, the operation and data are not guaranteed.
- *3: After tcp following Cycle #6, the Power Down Program is completed and returned to the normal operation.

PAD LAYOUT

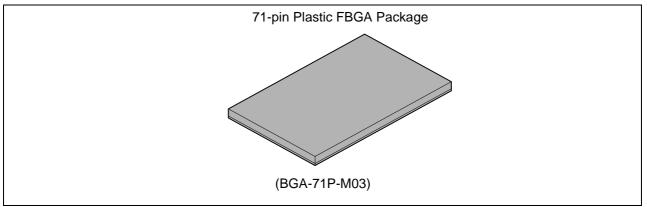

Please contact local FUJITSU representative for pad layout and pad coordinate information.

■ PAD DESCRIPTION

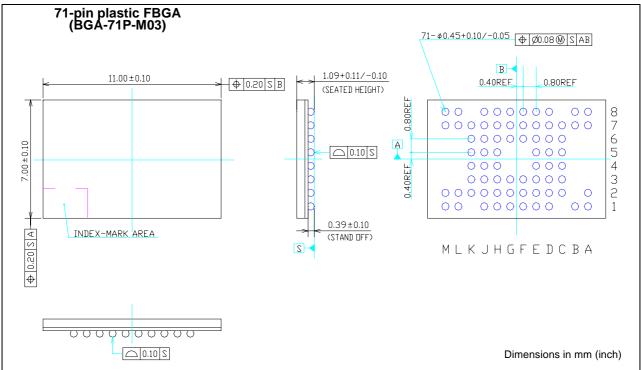
Pin Name	Description	
A20 to A0	Address Input	
CE1	Chip Enable (Low Active)	
CE2	Chip Enable (High Active)	
WE	Write Enable (Low Active)	
OE	Output Enable (Low Active)	
LB	Lower Byte Control (Low Active)	
UB	Upper Byte Control (Low Active)	
DQ8-1	Lower Byte Data Input/Output	
DQ16-9	Upper Byte Data Input/Output	
Vdd	Power Supply	
Vss	Ground	
TEST/OPEN	Test/Open (This pad should be left open. Do not use.)	

■ PACKAGE FOR ENGINEERING SAMPLES

Pin Assignment



Pin Description


Pin Name	Description	
A ₂₀ to A ₀	Address Input	
CE1	Chip Enable (Low Active)	
CE2	Chip Enable (High Active)	
WE	Write Enable (Low Active)	
OE	Output Enable (Low Active)	
LB	Lower Byte Control (Low Active)	
UB	Upper Byte Control (Low Active)	
DQ8-1	Lower Byte Data Input/Output	
DQ16-9	Upper Byte Data Input/Output	
Vdd	Power Supply	
Vss	Ground	
NC	No Connection	

■ PACKAGE FOR ENGINEERING SAMPLES (Continued)

Package View

Package Dimensions (Preliminary Drawing)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Marketing Division Electronic Devices Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0721, Japan Tel: +81-3-5322-3353 Fax: +81-3-5322-3386

http://edevice.fujitsu.com/

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94088-3470, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999

http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fme.fujitsu.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD. #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741 Tel: +65-6281-0770 Fax: +65-6281-0220 http://www.fmal.fujitsu.com/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

http://www.fmk.fujitsu.com/

F0404 © FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any thirdparty's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.